
22-Apr-0908-09-27 Intro to Presentation programming 1

Presentation workshop

Christian Forkstam, PhD student
Karolinska Institute, Stockholm Brain Institute
Donders Centre for Cognitive Neuroimaging and
Max-Planck Institute for Psycholinguistics, the Netherlands
E-mail: christian@forkstam.se

22-Apr-0908-09-27 Intro to Presentation programming 2

Outline

• Presentation software (http://www.neurobs.com/presentation/docs)

• Presentation toolbox: Stimulus Presentation Lab (PCP-SPL;
http://forkstam.se/PCP)

22-Apr-0908-09-27 Intro to Presentation programming 3

What is Presentation? 1

• Presentation is a stimulus delivery and experimental control software
for timely stimulus presentation and response logging

• It runs neurobehavioral experiments on Windows using standard PC
hardware

• It was designed for behavioural and physiological experiments
including FMRI, EEG, and reaction time investigations

• It is completely programmable
• It is also possible to run as a sequence of pages much similar to a

animated power-point presentation

22-Apr-0908-09-27 Intro to Presentation programming 4

What is Presentation? 2

• The Presentation software consists of
– a Graphical User Interface (GUI)
– a Scenario Description Language (SDL) which describes stimuli,

sequences of stimuli and associated properties, and
– a Presentation Control Language (PCL) which is a interpreted

programming language for custom control of scenarios
– a text editor designed to facilitate writing and editing scenario files,

template files and PCL files
– a homepage (www.neurobs.com) with a knowledge forum and

software documentation with tutorials and example experiments

Analysis Window

Editor

22-Apr-0908-09-27 Intro to Presentation programming 5

Features 1

Presentation has many features that make it applicable to a diverse range of applications:
• Multi-tasking

– Simultaneous control of display of several audio and/or visual stimuli
– Simultaneous monitoring with high accuracy of responses and I/O ports
– External software interfacing, e.g. interface to Matlab workspace

• Timing
– Reporting of times for any event of interest and verification of all timing to detect operating

system problems
– Benchmark testing to evaluate operating system timing behavior and to test individual

computers with individual experiments
• Programmability

– Built-in programming language for custom control (PCL) to control stimulus presentation in real-
time

– Adjustment of stimuli based on responses or external inputs in real-time to use e.g. adaptive
procedures during presentation

• Visual Stimuli
– Display of stored images, stored videos, animation, and 3D stimuli
– Synchronization of stimulus appearance and display of a new stimulus up to every vertical scan

22-Apr-0908-09-27 Intro to Presentation programming 6

Features 2

• Auditory Stimuli
– 1-8 channels of stored sounds (.wav) with a resolution of 8, 16, or 24 bit
– Independent volume control on each channel

• Input Devices
– Monitor button press input from e.g. mouse and keyboard
– Monitor position input from mouse and joystick

• Input/Output ports
– Simultaneous monitoring of multiple input and output ports
– Constructs an interface to external devices and acquisition systems by the sending of event

time-locked pulses
• FMRI (external device) synchronization

– Synchronization of stimulus sequences on specific pulse/scan (use of interrupts with the
parallel port)

– Option to test FMRI experiments in emulation mode
• Eye-tracker interfacing

– Generalized common interface for communication with eye trackers
– Access gaze position, blink, fixation, pupil, and saccade data
– Present eye position dependent stimuli

22-Apr-0908-09-27 Intro to Presentation programming 7

System requirements

• Any Microsoft Windows operating system (except Windows 95)
• DirectX version 8 or later (a software library available for free from Microsoft)
• A Pentium class or compatible processor
• Hardware needed to run your experiment:

– Is the hardware capable of presenting the stimuli in the desired manner?
– Can the hardware achieve the required timing accuracy?

• Important characteristics of your system are the amount of memory, the
sound card and the video card

• Windows will swap to the hard drive if the memory is insufficient
• This results in disk accesses occurring during the experiment which will

greatly degrade performance
• If the stimuli for one scenario do not all fit into memory simultaneously, you

can load and unload stimuli during the scenario

22-Apr-0908-09-27 Intro to Presentation programming 8

Hardware configuration

• The GUI allows you to set the experimental hardware options

Example:
The experiment description specifies the visual stimuli for an experiment.
It assumes the presence of four buttons to gather subject responses.
We then use the GUI to select the display adapter (and therefore the monitor) to
use for stimulus presentation.
We also specifies the response devices and specific buttons to use.

22-Apr-0908-09-27 Intro to Presentation programming 9

Stimuli

• Presentation can display 2D graphics, compressed videos, sounds,
3D graphics, and force feedback

• Presentation can construct text displays and simple 3D shapes for you
• More complex stimuli must be constructed outside of Presentation and

stored on disk for use in the experiment

22-Apr-0908-09-27 Intro to Presentation programming 10

Timing 1

• Presentation is designed to attempt to present the stimuli exactly as
requested

• More importantly it produce a detailed report indicating what actually
happened during an experiment

• Both performance and accuracy is required for good timing control
• The concern of accuracy is always relevant to the concern of exact timed

presentation
• Without knowing the timing accurately, it is not possible to verify that the

stimuli were presented as desired
• Factors affecting the ability to determine the actual timing of events:

– The hardware involved
– Communication method with the PC and device driver and system

handling
– Activity of the software when an event occurs
– Activity of the operating system or other programs (including

Presentation) when an event occurs

22-Apr-0908-09-27 Intro to Presentation programming 11

Timing 2

• Presentation has special features to address the accurate
measurement and verification of times measured by the software
– First, to have accurate information about event timing one must

know something about the hardware involved
– Software can usually report the time of detection by the software

accurately
– But the relationship between that time and the time for some

physical event is determined by the particular hardware
involved

Example: A response device scans its button state every 10 millisecond. This
makes it possible to know the time of a response with at the most a 10
millisecond resolution. This is a hardware property and is independent of any
software level inferences in the rest of the system. It places a hard constraint on
the accuracy possible using any software.

22-Apr-0908-09-27 Intro to Presentation programming 12

Timing 3

– Second, information from hardware is transmitted to application
software using e.g. a USB or PCI bus, and is then handled by
device drivers within the operating system

– Each with its own mode of operation and associated timing
behavior which often is not directly controllable by software
applications

– If an event occurs while the software is performing an
operation, the event cannot be detected until the operation is
completed and the software can again check for events

22-Apr-0908-09-27 Intro to Presentation programming 13

Timing 4

• Windows processor time slices are on the order of tens of milliseconds
• But Presentation performs many operations at once (playing sounds,

preparing stimuli, monitoring ports, etc.)
• For this Presentation use very small micro-threaded operations to minimize

the time between checks for events
• Under most circumstances, these time intervals are well below 1 millisecond
• Interrupts by the operating system, device drivers, or other applications is a

big problem for accurate event detection
• Operating system interruptions cannot be predicted or prevented
• In most cases these interruptions will not adversely affect the timing accuracy

of the experiment
• But it is important to verify the timings to avoid unexpected events cause

timing problems without notification to the experimenter

22-Apr-0908-09-27 Intro to Presentation programming 14

Timing 5

• Presentation verifies the events times it measures using its uncertainties
feature

• For all events that can be affected by operating system activity or
Presentation's own activity, Presentation always measures two times

• One of which is definitely before the detection of an event by the software,
and one of which is after the detection
– Reporting times for any event of interest to the user allowing to verify that

the stimulus sequence was presented exactly as intended
– Reporting timing uncertainties for all events to notify the user of any

interruptions in the stimulus delivery or response monitoring
• This ensures that no such interruptions can affect your timing without the

knowledge of the experimenter
• This allows for the monitoring responses while presenting both complex and

high rate multimodal stimuli without sacrificing response timing validation

22-Apr-0908-09-27 Intro to Presentation programming 15

Timing - Summary

• For most systems and experiments, Presentation attains a precision
of better than one millisecond

• To achieve the best possible timing
– Carefully control the software running on the Presentation system
– Minimize any background processes
– Turn off scheduled task
– Turn off unnecessary running applications
– Turn off the network to avoid any network related activity
– Maintain your experimental computer installation as clean and

minimal as possible

22-Apr-0908-09-27 Intro to Presentation programming 16

Timing and uncertainties for events 1

• Presentation is designed to receive explicit notification if any time
uncertainties occur

• For each event in the log file Presentation provides a time of
occurrence T and an uncertainty dT

• These two numbers provide bounds on the time of occurrence of a
Presentation event

• The relationship between Presentation events and actual events
depends on the particular type of event and the hardware involved

• The uncertainty value means that the Presentation event occurred
between time T and time T + dT

• For each type of event, Presentation determines if the event has
occurred (is_done()) which returns true if the event has occurred and
otherwise false

22-Apr-0908-09-27 Intro to Presentation programming 17

Timing and uncertainties for events 2

• At some point near the occurrence of an event, the following
sequence occurs in the program:

• This means that the Presentation event occurred some time between
the first and second calls that are shown to is_done()

• The event occurred after time time1 and prior to time time3
• Presentation reports the following T and dT values in the event log

• This timing cycle is performed for every event

...
time = time1
is_done() is false
...
time = time2
is_done() is true
[start of output code]
time = time3
...

T = time1
dT = time3 - time1

22-Apr-0908-09-27 Intro to Presentation programming 18

Timing and uncertainties for events 3

• Any interruptions occurring during the experiment which affect the
reported times of events will be in the reported uncertainties

• Presentation allows you to send output codes associated with events
from the standard serial and parallel ports

• The beginning of these codes is also bounded between times T and
T+dT

• This means that the start of an output code and the associated
Presentation event are never separated by more than dT

22-Apr-0908-09-27 Intro to Presentation programming 19

Presentation programming 1

• Presentation uses a simple text description both to describe the
stimuli to present during an experiment and how to present them

• The text file experiment specification describes stimuli, sequences of
stimuli and general experimental behaviours

• An experiment implemented in Presentation will consist of one or
more scenarios

• The chain of events in an experiment is specified in scenarios by
writing a text description stored in one or more text files for each
scenario (SCE, PCL, TEM)

22-Apr-0908-09-27 Intro to Presentation programming 20

Presentation programming 2

• Scenarios are the core unit in Presentation and experiments are
subdivided into scenarios

• A scenario is a sequence of actions that Presentation performs
continuously before returning control of the computer back to the
experimenter

• When a scenario starts, Presentation takes control of the computer's
resources and executes the actions that you have specified in the
scenario description

• You cannot regain control of the computer until the scenario ends, but
you can pause, resume, or quit the scenario at any time using pre-
specified keyboard keys

• You control the subdivision of an experiment into scenarios
• A scenario may contain one block or many, one test or many tests,

one experimental condition or many

22-Apr-0908-09-27 Intro to Presentation programming 21

Presentation programming 3

• There are two custom languages that are used to write scenarios
– Scenario Description Language (SDL): descriptive language used

to specify stimuli and their associated properties, and sequences
of stimuli and associated properties

– Presentation Control Language (PCL): interpreted programming
language used to implement custom control of scenarios

• All scenarios will contain some SDL, and some are written entirely in
SDL

• For each scenario, there is one main text file called the scenario file,
which identifies the scenario

• When you specify a list of scenarios when making a Presentation
experiment, you do so by specifying the filenames of the scenario files

22-Apr-0908-09-27 Intro to Presentation programming 22

Presentation programming 4

• The text description of a scenario
has three distinct parts.
– The first part is called the

scenario file header, and can
contain definitions of various
parameters that affect the
scenario as a whole

– The second part is the SDL
object definition part, which
described the stimuli and
stimulus sequences that will be
used in the scenario

– The third part is the PCL
program, which is optional and
can be located in a separate
PCL text file

22-Apr-0908-09-27 Intro to Presentation programming 23

Presentation programming 5

• It may be convenient to separate the scenario description for a single
scenario into multiple files
– First, you can place sections of SDL into separate template (TEM)

files that are referenced by the SDL section of the scenario file
– The text of these helper files is imported by Presentation when it

analyzes the scenario file
– These template files may in turn reference other template files
– Second, instead of putting the PCL program inside the scenario

file, you can place it in a separate PCL text files
– Also the PCL files may reference other PCL files that are imported

when Presentation analyzes the PCL program

22-Apr-0908-09-27 Intro to Presentation programming 24

Scenario Objects 1

• After the scenario header a series of statements that define the
various components of the stimuli to be used by the scenario is
defined

• The SDL section is constructed using scenario objects, an abstraction
within Presentation that represents some aspect of the stimulus
delivery

• The syntax of SDL allows you to specify your scenario objects
• Examples of scenario objects are picture, bitmap, sound, trial, and

stimulus_event objects
• Scenario objects have associated parameters and can refer to other

scenario objects
• For example, a picture object, which represents one full screen of

graphics, can contain one or more picture part objects, such as bitmap
or text

22-Apr-0908-09-27 Intro to Presentation programming 25

Scenario Objects 2

• Scenario object definitions have a specific format
• The definition of a scenario object begins with the name of the type of

object

• Every time you write an object definition, a new object will be created,
even if that object is identical to some other object

#-- SDL excerpt --#
In this example, picture, bitmap, and trial are object type names
picture {} default;
bitmap { filename = "pic1.jpg"; } graphic1;
trial {

picture pic1;
time = 0;

};

22-Apr-0908-09-27 Intro to Presentation programming 26

Scenario Objects 3

• After the type name, an object definition always requires an opening
curly bracket { followed by one or more statements, followed by a
closing curly bracket }

• You can then optionally assign a name to the object to store the
object instead of immediate use

• An object definition, like all SDL statements, always ends with a semi-
colon ;

SDL Type Definition: scenario object

<keyword object_type_name> {
[statements]

} <string object_name>;

22-Apr-0908-09-27 Intro to Presentation programming 27

SDL Versus PCL

• A text description of a scenario is as a recipe that Presentation uses
to cook up your experiment

• A recipe usually has a list of ingredients, and a set of instructions

• The list of ingredients lists
things to use when cooking

• The list of instructions tells you
what to do with those things

Example: Cooking Experiment

Ingredients (SDL)
2 cloves garlic
1 tbsp salt
½ tsp black pepper
1 cup flower
2 large eggs
…
Instructions (PCL)
1. Mix together eggs and flower in a big mixing bowl
2. Saute onions and garlic in a small sauté pan
3. …

22-Apr-0908-09-27 Intro to Presentation programming 28

SDL is not a programming language 1

• SDL is as an easy way to specify the scenario objects that will be
used during the scenario

• SDL statements are not commands or instructions that Presentation
follows when running the scenario

• The SDL part of a scenario is processed before the scenario even
starts

• The ingredients for the scenario are
– a set of scenario objects whose initial state is specified in SDL
– a trial order list for the trial objects defined in SDL

22-Apr-0908-09-27 Intro to Presentation programming 29

SDL is not a programming language 2

• After processing the SDL part of your description, Presentation will
make all of the objects that it needs

• A trial object contains a list of stimuli and associated timing
parameters

• When Presentation presents a trial, it presents the stimulus
sequences described in the trial

• The display of trials has some feedback capabilities but for the most
part you cannot implement response dependent behaviour in SDL

• If there is no PCL program to follow, Presentation will use the trial
order list and automatically present each trial object

22-Apr-0908-09-27 Intro to Presentation programming 30

SDL automation features

• SDL features looks like programming structures but they are simply
text replacement devices
– SDL Variables
– Templates
– Mathematical Expressions
– LOOPs
– Ifs

• They are not instructions that Presentation follows when the scenario
is run

• They are eliminated by a pre-processor before Presentation ever
really sees them

• For programmatic behaviour PCL has to be used

22-Apr-0908-09-27 Intro to Presentation programming 31

Template Files

• Template files supplement scenario files, and help make writing a scenario
easier

• Like scenario files, template files are text files and are written in SDL
• Template files are referenced within a scenario file using a TEMPLATE

statement
• This causes Presentation to process the code in the template file a multitude

of times
• The use of template files is merely a convenience and are useful for repeated

structures
• By the time the part of Presentation that analyzes the SDL sees the

description, the code from different files has already been merged making it
irrelevant from which file it came

• Template files are often used in combination with SDL variables
• This allow the resulting code to be different each time the code in the template

file is processed
• This is useful when you need to repeat essentially the same section of SDL

with minor modifications

22-Apr-0908-09-27 Intro to Presentation programming 32

Template example

It is irrelevant to Presentation which of these
ways is chosen to code

#-- SDL excerpt --#
trial {

picture default;
time = 0;
picture pic4;
time = 1000;
code = "tree";
target_button = 1;

};
trial {

picture default;
time = 0;
picture pic2;
time = 800;
code = "horse";
target_button = 3;

};
trial {

picture default;
time = 0;
picture pic6;
time = 1200;
code = "rose";
target_button = 1;

};

#-- SDL excerpt --#
TEMPLATE "main.tem" {

pic ecode isi tbutton;
pic4 "tree" 1000 1;
pic2 "horse" 800 3;
pic6 "rose" 1200 1;
...

};

#-- template file excerpt--#
filename: main.tem
trial {

picture default;
time = 0;
picture $pic;
time = $isi;
target_button = $tbutton;
code = $ecode;

};

22-Apr-0908-09-27 Intro to Presentation programming 33

PCL is a programming language 1

• Understanding how to use PCL introduces a level of complexity in
implementing experiments

• It provides you with a greater level of flexibility
• In scenarios that do not use PCL, Presentation will automatically

execute all of the trial objects described in SDL
• For scenarios that use PCL, Presentation executes the PCL program
• SDL is then used to describe the stimulus objects used in the scenario

while these objects are then manipulated using PCL

22-Apr-0908-09-27 Intro to Presentation programming 34

PCL is a programming language 2

• The Presentation Control Language (PCL) is a simple interpreted
programming language

• Although PCL is an interpreted language programs are pre-compiled
into an intermediate form making them very fast

• The PCL interpreter is integrated into Presentation so that
Presentation continues to monitor multiple devices with sub-
millisecond precision

• In addition to the stimulus objects described in SDL, the PCL program
has access to other run-time information provided by Presentation

• PCL provides tools that permit experiments to be programmed in a
compact, efficient manner, e.g. randomized stimulus variation tools

• PCL is a real programming language and can control almost any kind
of experimental behaviour

22-Apr-0908-09-27 Intro to Presentation programming 35

PCL is a programming language 3

Example: The PCL program placed in a separate file
...
pcl_file = "my_pcl_program.pcl"; # define the scenario file in the header
...
begin;
...

Example: Placed inside the scenario file

SDL header
...
begin;
SDL part
...
begin_pcl;
PCL part
...

22-Apr-0908-09-27 Intro to Presentation programming 36

Scenario Object Access

• SDL allows you to define various objects related to stimulus delivery,
for example pictures, trials, and bitmaps

• In SDL you can assign names to any of these objects
• In scenarios that use PCL, the naming of objects in SDL serves the

purpose to allow for manipulation of these objects from PCL
• PCL has a set of variable types called reference types
• The value of a reference variable is a kind of pointer that references

an object
• When you name an object in SDL, Presentation automatically creates

a reference variable in PCL that points to that object
• You can use these variables to manipulate the referenced object

22-Apr-0908-09-27 Intro to Presentation programming 37

More Presentation programming 1

• SDL and PCL can contain user comments and spaces which are
ignored by Presentation

• Comments are notes that programmers make to themselves and other
programmers, and can greatly assist editing and debugging stages

• With an include statement PCL code from a separate file is read
• The PCL loop construct allows you to create PCL code that will

execute a single section of code repeatedly

loop
statement_list

until
boolean_expression

begin
statement_list

end

22-Apr-0908-09-27 Intro to Presentation programming 38

More Presentation programming 2

• The PCL if-then construct allows you to build conditional statements

• All statements contained in a loop statement between loop and end
form a scope

• Variables declared in a statement inside the loop statement have no
meaning outside the scope

if
boolean_expression

then
statement_list

elseif
boolean_expression

then
statement_list

else
statement_list

end

22-Apr-0908-09-27 Intro to Presentation programming 39

More Presentation programming 3

• Subroutines converts lines of code into logical subgroups that allow
for a greater flexibility and easier maintenance

• Properly implemented, subroutines provide a modular structure to
PCL code

• You may define your own subroutines that can be called later in your
PCL program much similar to other objects

• You may pass arguments and receive return values from subroutines
• A subroutine is defined in a subroutine statement (optional parts

inside []):

sub
[return_value] name [argument_list]

begin
subroutine_body

end

22-Apr-0908-09-27 Intro to Presentation programming 40

PCP Presentation Toolbox

• PCP-SPL (Pipeline Code Project - Stimulus Presentation Lab) is a
package for timely stimulus presentation and response logging

• It is an open source project, provided 'as is' and available to the
scientific community as free but copyright software

• PCP-SPL runs on the Presentation Software (www.neurobs.com)

22-Apr-0908-09-27 Intro to Presentation programming 41

TRIAL STRUCTURE: Sub-trial time periods within a trial

Trial name Screen Duration
(ms)

Time
(ms)

BEGIN TRIAL 0

PRE-STIMULUS PERIOD + 1000 1000

STIMULUS PERIOD XYZ 3000 4000

POST-STIMULUS PERIOD + 1000 5000

RESPONSE Response 2000 7000

INTER-TRIAL PERIOD + 4000 11000

NEXT TRIAL

22-Apr-0908-09-27 Intro to Presentation programming 42

Template files

• PCP-Scenario-Template.sce
– Scenario header definitions
– Scenario object definitions

• PCP-Items-Template.pcl
• PCP-Header-Template.pcl

– PCL header definitions
– Experiment lego

• PCP function library

	Outline
	What is Presentation? 1
	What is Presentation? 2
	Features 1
	Features 2
	System requirements
	Hardware configuration
	Stimuli
	Timing 1
	Timing 2
	Timing 3
	Timing 4
	Timing 5
	Timing - Summary
	Timing and uncertainties for events 1
	Timing and uncertainties for events 2
	Timing and uncertainties for events 3
	Presentation programming 1
	Presentation programming 2
	Presentation programming 3
	Presentation programming 4
	Presentation programming 5
	Scenario Objects 1
	Scenario Objects 2
	Scenario Objects 3
	SDL Versus PCL
	SDL is not a programming language 1
	SDL is not a programming language 2
	SDL automation features
	Template Files
	Template example
	PCL is a programming language 1
	PCL is a programming language 2
	PCL is a programming language 3
	Scenario Object Access
	More Presentation programming 1
	More Presentation programming 2
	More Presentation programming 3
	PCP Presentation Toolbox
	TRIAL STRUCTURE: Sub-trial time periods within a trial
	Template files

